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ABSTRACT: The Multi-Radar Multi-Sensor (MRMS) system produces a suite of hydrometeorological products that are
widely used for applications such as flash flood warning operations, water resource management, and climatological studies.
The MRMS radar-based quantitative precipitation estimation (QPE) products have greater challenges in the western
United States compared to the eastern two-thirds of the CONUS due to terrain-related blockages and gaps in radar cover-
age. Further, orographic enhancement of precipitation often occurs, which is highly variable in space and time and difficult
to accurately capture with physically based approaches. A deep learning approach was applied in this study to understand
the correlations between several interacting variables and to obtain a more accurate precipitation estimation in these sce-
narios. The model presented here is a convolutional neural network (CNN), which uses spatial information from small
grids of several radar variables to predict an estimated precipitation value at the central grid point. Several case analyses
are presented along with a yearlong statistical evaluation. The CNN model 24-h QPE shows higher accuracy than the
MRMS radar QPE for several cool season atmospheric river events. Areas of consistent improvement from the CNN
model are highlighted in the discussion along with areas where the model can be further improved. The initial findings
from this work help set the foundation for further exploration of machine learning techniques and products for precipita-
tion estimation as part of the MRMS operational system.

SIGNIFICANCE STATEMENT: This study explores the development and use of a deep learning model to generate
precipitation fields in the complex terrain of the western United States. Generally, the model is able to improve on the
statistical performance of existing radar-based precipitation estimation methods for several case studies and over a
long-term period in 2021. We explore the patterns associated with certain areas of strong performance and suggest po-
tential means of improving areas with weaker performance. These initial results indicate the potential of deep learning
to supplement radar-based approaches in areas with observational limitations.

KEYWORDS: Complex terrain; Precipitation; Deep learning

1. Introduction

The Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2016)
system provides operational high-resolution and rapid update
quantitative precipitation estimates (QPEs) for hydrological
situational awareness including flash flood warning operations,
streamflow predictions, and water resource management. The
current MRMS produces two classes of precipitation products:
the first is based primarily on quality controlled radar data
(Wang et al. 2019; Cocks et al. 2019; Zhang et al. 2020) while
the second (Martinaitis et al. 2020) is a multisensor QPE that
blends radar, hourly gauge observations, monthly precipitation
climatologies from the Parameter-Elevation Regressions on
Independent Slopes Model (PRISM; Daly et al. 2008, 1994;
www.prism.oregonstate.edu), and quantitative precipitation
forecasts (QPFs) from numerical weather prediction (NWP)
models. The radar-based QPE is produced every 2 min at a la-
tency of less than 90 s and demonstrates high accuracy when
validated against gauges in areas with seamless radar coverage

in the lower atmosphere. However, the radar-based QPE still
has challenges in areas of complex terrain, such as the western
United States. The multisensor QPE has higher accuracy by
comparison but has a 15–60-min latency due to the real-time
gauge data availability.

The MRMS radar-based QPE was initially generated based
on reflectivity–rain rate relationships (Zhang et al. 2016) and
has evolved to use dual polarization (dual-pol) radar variables
for attenuation-based rate estimation (Cocks et al. 2019;
Zhang et al. 2020). The western United States has large voids
in the low-level radar coverage due to beam blockages from
high terrain and other radar siting issues (Germann et al.
2006; Maddox et al. 2002). Further, the west experiences
unique microphysical processes, especially with atmospheric
river events (Zhu and Newell 1998; Neiman et al. 2008; Chen
et al. 2020) where substantial precipitation growth occurs in
the lowest levels due to orographic forcing. The radar beam
frequently scans above these processes and the high spatial
variability of the rain rates in these scenarios prevents a sim-
ple correction factor from being applied. The current physi-
cally based MRMS approach may not fully encompass all the
variables that are influencing the complex types of precipita-
tion regimes seen in the western United States. Radar-based
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estimation methods use only the near-surface radar variables
and a precomputed rain rate relationship for QPE generation,
which tends to have a dry bias (Zhang et al. 2012a; Martinaitis
et al. 2020) during heavy rain in these regions. To address
these limitations, a statistically based, deep learning approach

that can incorporate a wide range of input variables is being
explored in this work.

Deep learning (Chollet 2018) has become increasingly pop-
ular as its efficacy for solving problems across a wide range of
scientific disciplines has been demonstrated. One type of deep
learning model is a convolutional neural network (CNN),
which uses spatial filters to parse hierarchical information
from input data and propagate the learned patterns through
several layers to come up with a prediction (LeCun et al.
1998). A CNN model can take the spatial fields of several in-
teracting variables (predictors) and make a prediction for a
target variable (predictand). Meteorological applications tend
to have large datasets with spatially and temporally coherent
information, and the pattern recognition abilities of CNN
models fit well with this type of data (Sadeghi et al. 2019).
The convolutional filters of the CNN model allow it to con-
volve spatial features necessary to make predictions, rather
than using each grid point as a feature or relying on users for
manual feature extraction (Pan et al. 2019). CNNs have been
shown to provide value in the dynamical modeling space over
traditional NWP approaches that run into limitations at the
increasingly small scales of simulations (Pan et al. 2019).
CNNs were also applied to precipitation estimation problems

TABLE 1. List of input variables used in the CNN model setup
and testing.

No. Variables

1 Seamless hybrid scan reflectivity (SHSR)
2 SHSR height (SHSRH)
3 Vertically integrated liquid (VIL)
4 Radar quality index (RQI)
5 Composite reflectivity (CREF)
6 Reflectivity at lowest altitude (RALA)
7 Brightband bottom (BB_BOTTOM)
8 Brightband top (BB_TOP)
9 Reflectivity at 08C

10 Reflectivity at 258C
11 Reflectivity at 2108C
12 Reflectivity at 2158C
13 Reflectivity at 2208C

FIG. 1. Example input fields valid at 0000 UTC 14 Dec 2021: (a) SHSR, (b) SHSRH, (c) CREF, (d) RQI, (e) RALA, (f) VIL, (g) reflectiv-
ity at 08C height, (h) reflectivity at2158C height, (i) height of brightband top, and (j) height of brightband bottom.
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in different climate regions (Sadeghi et al. 2019; Miao et al.
2019; Sha et al. 2021; Yo et al. 2021). Initial work in this area
from the MRMS research group looked at the precipitation
estimation capability of a CNN model over Taiwan using
single-radar, dual-pol variables as input data. The results from
the study showed some statistical improvement in CNN QPE
compared to the radar-based, dual-pol synthetic QPE used
operationally in Taiwan, especially in mountainous terrain.
The research presented here will examine how a similar CNN
model setup performs in the mountainous area of the western
United States. An expanded set of input variables, relative to
that study, will be explored including radar observation
heights, melting layer heights, reflectivities at different tem-
perature levels, and vertically integrated liquid (VIL).

Section 2 of this paper will include a brief description of the
CNN model, the processes for the model training, and the ex-
perimental setup. Then in section 3 we will present the CNN
precipitation estimates for several cases, comparing the CNN
output to the physically based MRMS radar QPEs and discus-
sing the model’s performance. The final section will summa-
rize our conclusions and suggest potential extensions of this
work. A list of acronyms and definitions are presented in the
appendix.

2. Methodology

a. Input data

For the CNN model presented here, the input fields consist
of 5 km 3 5 km grids of 13 different radar-based variables
(Table 1) and the CNN output is a precipitation value at the
central grid point. Several different reflectivity fields are used
along with additional variables related to the radar sampling
characteristics [seamless hybrid scan reflectivity (SHSR)

height (SHSRH); radar QPE quality index (RQI)] and the
melting layer (brightband top and bottom). The reflectivities
at different temperature levels and the VIL field are included
as they can provide information regarding the microphysical
processes that contributed to precipitation. All input fields
are 2D grids that come from the MRMS mosaic dataset with
horizontal grid spacing of 1 km (Zhang et al. 2016), and Fig. 1
shows a few examples of the variables. The SHSR (Fig. 1a),
which is the lowest level reflectivity corrected for range/height
variations of reflectivity and blockage effects, is the main vari-
able used in the physically based radar QPE and thus a key in-
put variable for the CNN model. Permutation testing (Fig. 2)
confirms the SHSR variable is the most important to the
CNN model as the model error increases the most when
SHSR is randomly permuted. Since the SHSR observations
come from different heights at different ranges from the ra-
dar, the SHSRH (Fig. 1b) field is included as an input variable
to help mitigate range dependent errors in the QPE. Other
variables include composite reflectivity (CREF; Fig. 1c), RQI
(Fig. 1d), reflectivity at lowest altitude (RALA; Fig. 1e), VIL
(Fig. 1f), reflectivity at several temperature levels (Figs. 1g,h)
and brightband top (Fig. 1i) and bottom (Fig. 1j). CREF is de-
rived from the MRMS 3D reflectivity mosaic and is the maxi-
mum value within each grid column. RALA is also derived
from the MRMS 3D reflectivity mosaic and is the nonmissing
reflectivity at the lowest altitude within each grid column.
RALA is similar to SHSR but without the brightband correc-
tions. The RQI field (Martinaitis et al. 2020; Zhang et al.
2012b) is a function of the SHSRH and radar beam blockages
and represents the relative correlations of the SHSR observa-
tions with the surface precipitation. The brightband top and
bottom height fields are a blend of the radar-derived bright-
band top and bottom heights (Zhang et al. 2008) and the 2D
freezing-level height from NWP models.

FIG. 2. Permutation importance testing results, where each input
variable is randomly permuted separately and the resulting impact
on the model averaged MAE (mm) is shown. The model is run on
the full training dataset for these permutation experiments.

TABLE 2. Time periods of the training, validation, and
simulation data.

Training Validation Simulation

6 Mar 2019
February 2019 February 2020 27 Nov 2019
December 2019 17 Jan 2020
December 2020 13 Mar 2020

All precipitation days 2021

TABLE 3. Overview of the precipitation size bins used to
separate training examples. For each of these bins, the value to the
left is exclusive (.) and the value to the right is inclusive (#).

Precipitation size bins

0–1 mm 10–12 mm 22–24 mm
1–2 mm 12–14 mm 24–26 mm
2–4 mm 14–16 mm 26–28 mm
4–6 mm 16–18 mm 28–30 mm
6–8 mm 18–20 mm .30 mm
8–10 mm 20–22 mm
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The truth dataset used in the training process was initially
from hourly precipitation gauge observations in the Meteoro-
logical Assimilation Data Ingest System (MADIS; https://
madis.ncep.noaa.gov/). The gauge data were quality con-
trolled based on a comparison to the MRMS radar QPEs (Qi
et al. 2016; Martinaitis et al. 2021). The model was later tested
using the MRMS multisensor hourly accumulated QPE
(“Q3MS”; Martinaitis et al. 2020) as a gridded truth dataset
with more spatially continuous coverage compared to the ir-
regularity of the gauge observations. Each grid point was
treated as a separate training example with its QPE value be-
ing used to constrain the model. The resulting model output
was similar whether the gauge truth or gridded truth datasets
were used on their own or combined in a single training data-
set. For the CNN model presented here, 3 months of training
data were used with 2 months of hourly gauge truth data

(February and December 2019) and 1 month of gridded
hourly Q3MS truth data (December 2020) (Table 2). An addi-
tional month of hourly gauge truth data (February 2020) was
used for the model validation process. The input variables
(listed in Table 1) are available every 2 min, but both of the
truth datasets contain hourly precipitation information avail-
able at the top of each hour. This necessitated an accumula-
tion of the 2-min input variable fields to hourly values for the
training process. This approach does not fully leverage the
temporal variability information available in the radar fields
and a long short-term memory (LSTM; Hochreiter and
Schmidhuber 1997; Yang et al. 2020) model that can account
for the temporal patterns in the data will be explored in future
work.

b. CNN model setup

There were several preprocessing steps applied to the input
data to improve the model performance, including binning
the data samples by precipitation amount (full list of data bins
shown in Table 3) and balancing the number of training
samples per precipitation bin. The number of samples in the
4–6-mm size bin was used as the uniform sample size drawn
from each bin. This intermediate bin was chosen for the sam-
ple size to avoid overfitting to more numerous samples in the
lowest precipitation bins, while still maintaining an adequate
number of samples for the model to learn from. A rotation
was also applied to the input grids through different angles.
This is a common data augmentation technique used within
CNN models to increase the number of samples available to
the model. The training samples were also shuffled to avoid
any temporal correlations in the input data. With wide rang-
ing values in the different input variables, scaling was needed
to avoid having the model only focus on those variables with
high magnitude variances (Lagerquist et al. 2020). The scaler
operation applied here transforms each input variable field to
take on a value between 0 and 1, based on where the raw

FIG. 3. Example schematic of how an input field progresses through the different layers of the CNNmodel. The white dashed box repre-
sents the convolutional or pooling filters being applied to the respective layers in a moving window. The filter size and stride length are in-
dicated to the bottom and the dimension information for each model layer is shown to the top. At the far left, the location of the training
example in Northern California is shown (magnified to be larger than the actual 5 km3 5 km size for visualization purposes). A simulated
QPE field is generated by applying this process over every grid point of the western U.S. domain.

TABLE 4. List of maximum and minimum values from the
training dataset for each input variable. These values represent
the summation of the 30 radar input field files available over an
hour. These maximum and minimum values are used to scale the
respective input variable for each data sample.

Variable name Max value Min value

SHSR 1443.5 dBZ 0 dBZ
VIL 107.8 kg m22 0 kg m22

RQI 30 0
CREF 1543 dBZ 0 dBZ
RALA 1411 dBZ 0 dBZ
BB_BOTTOM 97 707 m 0 m
BB_TOP 118 707 m 0 m
SHSRH 161.8 km 0.03 km
Reflectivity at 08C 1393 dBZ 0 dBZ
Reflectivity at 258C 1218 dBZ 0 dBZ
Reflectivity at 2108C 1130.5 dBZ 0 dBZ
Reflectivity at 2158C 1081 dBZ 0 dBZ
Reflectivity at 2208C 991 dBZ 0 dBZ
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FIG. 4. CNN model architecture.
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value is located relative to the minimum and maximum values
of that variable (Table 4) within the training dataset.

The CNNmodel used here is an example of a deep learning
scheme with several model layers including a convolution
layer for delineating spatial features, a pooling layer to down-
sample the gridded information for faster processing, and
dense layers (i.e., standard neural network layers) to come
up with the predicted value (Lagerquist et al. 2020). The
schematic in Fig. 3 outlines how a training example over
Northern California would progress through the model
layers, starting with the thirteen 5 km 3 5 km input variable
grids (with 1-km MRMS pixel size) and ending with the
predicted precipitation value at the center point of that
5 km 3 5 km grid.

The CNN starts with a convolutional layer that applies 64
distinct 3 km 3 3 km convolutional filters to the 5 km 3 5 km
input variable grids. The convolutional filters are applied in a
moving window centered over each of the nonboundary grid
points of the input grid. The resultant output from the matrix
operations in the convolutional layer is a 3 km3 3 km feature
map for all 64 filters. A leaky rectified linear unit (ReLU) ac-
tivation function (Maas et al. 2013) is applied after the convo-
lutional layer to avoid the vanishing gradients problem, to
allow the model to learn nonlinear relationships, and to avoid
losing information from neurons with values below 0. A pool-
ing layer downscales the 3 km 3 3 km feature maps to
2 km 3 2 km fields by performing an average value operation
over the four 2 3 2 boxes of the 3 3 3 grids. The resultant
64 channels of 2 km 3 2 km grids are then flattened into a
256 3 1 vector that is sent through three successive 1D neural
network (dense) layers with a single predicted precipitation
value as output from the final layer. The predicted value is
compared to the quality-controlled rain gauge (or gridded
truth) precipitation value at the center of the 5 km 3 5 km in-
put grid, with the goal of minimizing the mean absolute error

(MAE) between those values after many data samples and
training iterations. The model parameters are adjusted via
backpropagation after each batch of training data, with the
gradient descent method used to minimize the MAE value.
A validation step is applied to assess the model perfor-
mance on an independent dataset during the training pro-
cess. After this training and validation process, the CNN
model is used to make inferences at each grid point of the
western U.S. domain and generate a “simulated” CNN
QPE for selected cases independent of the training and val-
idation datasets.

The model is trained and tested using Keras within Py-
thon (Chollet et al. 2020). For the trained model presented
here, the Adam optimizer was used along with a batch size
of 1000 samples and 10 epochs. To help the model general-
ize to unseen data and avoid overfitting, a Gaussian noise
layer is applied after the first dense layer and a dropout
procedure (Hinton et al. 2012) is applied between some of
the dense layers. The full CNN model setup can be seen in
Fig. 4.

c. Experimental setup

The trained CNN model was applied to several cases in the
cool season of 2019 and 2020 as well as all precipitation days
during the year of 2021 (the “simulation data” in Table 2)
over a regional domain in the western United States. The do-
main (Fig. 5) has a resolution of 0.018 latitude 3 0.018 longi-
tude (;1 km3 1 km) and covers California where the coastal
and inland mountains often result in uplift and orographic en-
hancement of precipitation. The typical distribution of hourly

FIG. 5. The analysis domain (white box) of the current study and
a digital elevation model (DEM). The white dotted line indicates
the California Coast Ranges, the dashed line indicates the Central
Valley, and the dot–dashed line indicates the Sierra Nevada range.
The white “1” symbols represent radar sites.

FIG. 6. Distribution of hourly MADIS gauges (green “1” symbols)
used in the training dataset from 1300 UTC 18 Feb 2019.
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gauges used in the training process within the domain is
shown in Fig. 6 (;1200 gauges on average for a given hour).
The selected simulation days in 2019 and 2020 involved atmo-
spheric rivers (AR) with plumes of moist air over the Pacific
Ocean feeding into the region. These types of events account
for the majority of annual precipitation occurring in this area
(Bytheway et al. 2020), and precise precipitation quantifica-
tion within these events is essential for water resource
management.

For each simulation day, the CNNmodel was tested by gen-
erating 24-h accumulated QPE simulations and then validat-
ing against the Community Collaborative Rain Hail and Snow
Network (CoCoRaHS; https://www.cocorahs.org/; Cifelli et al.
2005) gauge accumulations. As described in the model section
above, the CNN creates a simulated precipitation value by

taking a set of thirteen 5 km 3 5 km input fields and moving
through the model layers to yield an estimated hourly pre-
cipitation value at the center point of the 5 km 3 5 km grid.
This procedure is then repeated over each grid point of the
specified domain shown in Fig. 5 to generate a 2D hourly
QPE field. The simulated hourly fields are generated for 24
consecutive hours with a resultant 24-h accumulated CNN
precipitation field. Statistical evaluation was performed and
included a comparison of the mean bias ratio (MBR), corre-
lation coefficient (CC), MAE, and fractional MAE (fMAE)
from the CNN method and from the operational MRMS ra-
dar QPE. The definitions of the MBR, CC, MAE, and
fMAE are as follows:

MBR 5 Q/G, (1)

FIG. 7. (a) The MRMS Q3EVAP and (b) CNN model 24-h QPEs ending at 1500 UTC 6 Mar 2019 with validation
against CoCoRaHS gauges. The solid circles in (a) and (b) indicate gauge locations. The size of the circles is propor-
tional to the gauge amounts, and the color represents the QPE/gauge ratio. Cool (blue) colors of the circles indicate
QPE overestimation relative to gauges while warm (red) colors indicate underestimation. Scatterplots of the
(c) Q3EVAP and (d) CNNQPEs vs gauges.
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where

Q 5

∑
N

i51
Qi

N
, (1a)

G 5

∑
N

i51
Gi

N
, (1b)

CC 5

∑
N

i51
(Qi 2 Q)(Gi 2 G)������������������������������������

∑
N

i51
(Qi 2 Q)2∑

N

i51
(Gi 2 G)2

√ , (2)

MAE 5
1
N
∑
N

i51
Qi 2 Gi

∣∣ ∣∣; and (3)

fMAE 5 MAE/G, (4)

where N is the total number of QPE-gauge pairs for the given
dataset, Qi is the CNN (or MRMS) 24-h QPE, and Gi is the
gauge-observed 24-h rainfall at the ith gauge station.

d. Masking procedure

Initial experiments showed that when certain input varia-
bles were included, the CNN model precipitation simulations
would have artifacts present. The artifacts tended to be uni-
form, spurious light precipitation covering large portions of
the domain with occasional ring-shaped features. The circular
artifacts are likely associated with the arc-shaped features of
the SHSRH (Fig. 1b) and RQI (Fig. 1d) fields near the edge
of the radar coverage area. With the overshooting beam ef-
fects far from the radar, the model cannot rely on the radar

FIG. 8. Enlarged view of the 24-h QPEs from (a) Q3EVAP and (b) CNN for the 6 Mar 2019 case over Northern California. (c) The
SHSRH field valid at 0300 UTC 6 Mar 2019.

FIG. 9. The bias ratio of the 24-h (a) Q3EVAP and (b) CNNQPE against individual CoCoRaHS gauges as a function
of the 24-h average RQI for the four atmospheric river precipitation events.
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reflectivity fields to accurately delineate areas where precipi-
tation is occurring. Relying on variables with more uniform
coverage, such as SHSRH and RQI, where the value of the
variable is not well correlated to precipitation occurrence
likely makes the model more susceptible to errors in precipi-
tation placement. The RQI and SHSRH variables may pro-
vide useful information regarding radar sampling and related
QPE biases, so to mitigate the false precipitation while retain-
ing the benefits of these variables, a precipitation mask was
applied to the CNN model output. The MRMS operational
dual-pol radar synthetic hourly QPE field with evaporation
correction (“Q3EVAP”; Zhang et al. 2020) was used to mask
the CNN QPE predictions, such that the CNN values were set
to 0 anywhere the hourly Q3EVAP field had no precipitation.
Therefore, while the current CNN QPE does provide ad-
justed precipitation amounts relative to the Q3EVAP prod-
uct, the precipitation coverage area remains unchanged from

Q3EVAP. Precipitation coverage improvements would likely
come from the use of additional data sources such as satellite
observations.

3. Results

After completion of the training process, the CNN model
was applied to the 2019 and 2020 atmospheric river events
(Table 2) and hourly QPE fields were generated over the
study domain (Fig. 5). Using the hourly CNN QPE fields,
24-h accumulations were then calculated and compared to
the CoCoRaHS gauge observations. The CNN model
performance was also compared to the performance of
Q3EVAP, which is a physically based scheme using explicit
relationships between radar variables and the precipitation
rate. Finally, the CNN model was tested on all precipitation
days in 2021.

FIG. 10. As in Fig. 7, but for 1500 UTC 27 Nov 2019. The white and black dashed circles indicate areas of different
Q3EVAP and CNN QPE performances, and detailed explanations can be found in the text.
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a. Case of 6 March 2019

A substantial atmospheric river event affected California
from 5 to 7 March 2019 with moderate integrated vapor trans-
port (IVT) values and widespread precipitation accum-
ulations of 2–4 in. (https://cw3e.ucsd.edu/wp-content/uploads/
2019/03/20190305_AR_Quicklook.pdf). There were substan-
tial underestimations (;48%) from the MRMS Q3EVAP
product (Figs. 7a,c) with a domain MBR of 0.52. The underes-
timation bias from the radar-based product is common in this
area due to terrain effects on radar observations (beam block-
age, overshooting, etc.). Also, the variability of the precipitation
processes within an orographically enhanced regime makes it dif-
ficult to apply the generalized radar-based rainfall rate equations
to these scenarios. The CNN QPE for this same period shows
much better agreement with gauges (Fig. 7d), reducing MAE
from 0.389 to 0.276 in. (;31% reduction), increasing CC from 0.
755 to 0.794, and nearly eliminating the bias (MBR5 1.045).

A notable finding from this event was the ability of the
CNN QPE to reduce the range-dependent bias in the radar
QPE. Figure 7a shows substantial underestimation over
Northern California (pink to red circles) from the MRMS
Q3EVAP product. The areas of the most severe underestima-
tion (white dashed line, Fig. 8a) line up mostly with the areas
of poor low-level radar coverage seen in the SHSRH field
(white dashed line, Fig. 8c), which is the bottom height of the
lowest radar beam with no severe blockages (i.e., #50%).
This underestimation is associated with the radar beam

overshooting the melting layer and therefore the radar obser-
vations are not representative of the hydrometeor phase and
size distributions at the surface (Zhang et al. 2012a). The
CNN product (Fig. 8b) shows better continuity across those
areas (white dashed lines, Fig. 8b) with higher values that
more accurately match gauge observations than the Q3EVAP
radar-based algorithm. Similar improvements were observed
in the other three AR cases. Figure 9 shows the bias ratios of
the 24-h Q3EVAP and CNNQPEs over individual CoCoRaHS
gauges as a function of the 24-h average RQI for the four cases
examined in this work. The median bias of Q3EVAP (purple
line, Fig. 9a) shows a persistent underestimation that worsens
with decreasing RQI, generally associated with increasing dis-
tance from the radar. The median bias of CNN QPE (purple
line, Fig. 9b) was closer to 1.0 than the Q3EVAP and was
largely independent of the RQI until when RQI fell below 0.3,
where beam overshooting of precipitation areas is more preva-
lent. These results demonstrated the CNN model’s capability to
mitigate range-dependent QPE biases, probably learned from
the RQI and SHSRH fields. Further, the CNN product reduced
the moderate underestimation bias near the radars (white circles,
Fig. 8a) in Q3EVAP where overshooting is less of a problem.

b. Case of 27 November 2019

Another atmospheric river event impacted most of California
from 26 to 27 November 2019 (https://cw3e.ucsd.edu/wp-content/
uploads/2019/11/27Nov19_Outlook/27Nov19_Outlook.pdf). The

FIG. 11. (a) A shaded relief terrain map and (b) SHSRH field over the Rouge Valley of southern Oregon (circled in white). The
MRMS 24-h radar-only QPE valid at 15 UTC 27 Nov 2019 (c) without (“Q3RAD”) and (d) with (“Q3EVAP”) the evaporation correc-
tion. The circles in (c) and (d) represent gauges as shown in Fig. 7a. (e) The PRISM 30-yr normal precipitation for November.
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24-h Q3EVAP ending at 1500 UTC 27 November 2019
(Fig. 10a) showed a large underestimation bias (;51%), espe-
cially along the coastal mountain ranges in Northern California
(Figs. 10a,c). The 24-h CNNQPE (Figs. 10b,d) for the same time
period eliminated the severe underestimation along the coastal
mountains while introducing overestimation in southern Oregon
(dashed black circle, Fig. 10b) and in the Central Valley and
the foothills of the Sierra Nevada range (dashed white circle,
Fig. 10b). This resulted in an overall wet bias of ;12% in the
CNN QPE. Nevertheless, the CNN QPE versus gauge values
lined up better with the 1:1 line (Fig. 10d) and the MAE dropped
from 0.525 in. for Q3EVAP to 0.344 in. for the CNNQPE, while
the CC increased from 0.310 to 0.642. A closer look at the over-
estimation in southern Oregon indicated a possible evaporation
effect that was not captured in the CNNmodel. Figure 11a shows
a terrain map centered around the Rouge Valley, a region that is
1.5–2.0 km below the lowest tilt (Fig. 11b) of the nearest radar,

KMAX (Medford, Oregon). Small precipitation particles
may be partially or even completely evaporated/sublimated
before reaching the ground when the environment near the
surface is sufficiently dry. The physically based radar QPE
without the evaporation correction (Fig. 11c) showed a simi-
lar overestimation bias (white circle, Fig. 11c) as in the CNN
QPE (dashed black circle, Fig. 10b) in the area, while
Q3EVAP had no wet bias (white circle, Fig. 11d). Further,
the PRISM 30-yr precipitation climatology for November
(Fig. 11e) shows a local minimum and indicates a persistent
deficit of precipitation in the area. Toward reducing this lo-
cal wet bias, the PRISM monthly precipitation climatology
field was added to the input variables and a new CNN model
(“CNN-PRISM”) was trained and applied to this case. How-
ever, the resultant QPE (Fig. 12) did not have a significant
reduction of precipitation in the Rouge Valley area (black
arrows, Fig. 12), most likely due to the small area and

FIG. 12. As in Fig. 10, but for the (a),(c) CNN model QPE and (b),(d) CNN_PRISM model QPE. The circles and
arrows indicate areas of different Q3EVAP and CNN QPE performances, and detailed explanations can be found in
the text.
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limited data samples for the training. This result highlights
the challenge of the machine learning technique in captur-
ing relatively “rare” and localized events. Meanwhile, the
CNN-PRISM QPE reduced the underestimation in the
CNN QPE along the coastal mountain ranges (black dashed
lines, Fig. 12) and the overestimation in the northern end of
the Sierra Nevada range and to the east of the KMAX radar
(red arrows, Fig. 12). The improvements yielded a lower
MAE (0.304 vs 0.344 in.) and higher CC (0.749 vs 0.642)
than the original CNN model (Fig. 12d vs Fig. 12c).

While the CNN models reduced the severe dry biases in
Q3EVAP, both of them introduced overestimation in the
Central Valley (white dashed circles, Figs. 12a,b). This was
likely due to different drop size distribution (DSD) in the val-
leys and in the mountain ranges (Kingsmill et al. 2006). DSD
differences near the surface can be large given the complex in-
teractions between the atmospheric flow and the topography
in the region. Such local variations may have not been fully
captured in the current input variables (Table 1) and warrant
future studies using additional environmental (e.g., moisture

and wind) information, geographic variables, and more data
samples.

c. Case of 17 January 2020

The third case examined was the atmospheric river event occur-
ring from 16 to 17 January 2020 (http://cw3e.ucsd.edu/wp-content/
uploads/2020/01/Jan152020_Outlook/15Jan20_Outlook.pdf). Simi-
lar to the previous cases, the MRMS Q3EVAP product had a
large underestimate bias (;40%) (Figs. 13a,c) in this oro-
graphically enhanced precipitation regime. The CNN model
(Figs. 13b,d) nearly removed the bias and had only;7% over-
estimation. It also reduced the MAE from 0.262 to 0.169 in.
(a 35% improvement) and increased the CC from 0.714 to
0.853 (;19% improvement). The remaining underestimation
mainly came from three areas (Fig. 13): 1) the southwestern
corner of Oregon, 2) along the coastline south of Eureka,
California (KBHX), and 3) Southern California.

For areas 1 and 2, the radar beam may have completely
overshot the precipitation clouds and resulted in missing re-
flectivities. The model is heavily reliant on the reflectivity

FIG. 13. As in Fig. 7, but for 1500 UTC 17 Jan 2020. The black circle and numbers indicate areas of specific Q3EVAP
and CNN QPE performances, and detailed explanations can be found in the text.
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variables, especially SHSR, and the performance is signifi-
cantly reduced when this reflectivity information is missing.
Also, the current precipitation masking based on the radar
QPE results in removal of CNNQPE in areas where the radar
beam is completely above the cloud top. Additional precipita-
tion data sources, such as satellite QPEs and/or QPFs from
NWP models are needed to fill in the precipitation informa-
tion under these situations and the precipitation masking pro-
cess will need to be refined to allow those data sources to fill
in the radar gaps.

A closer look at the underestimation in area 3 (Fig. 14) in-
dicates shallow, warm rain precipitation processes occurring
in the lowest levels. Both the CREF (Fig. 14a) and SHSR
(Fig. 14b) at 0330 UTC 17 January 2020 showed weak to
moderate reflectivities. A vertical cross section of reflectivity
(Fig. 14c) from the area showed very shallow precipitation
cores (e.g., reflectivity . 20 dBZ) that were largely below the
freezing level (pink dashed line, Fig. 14c), indicating warm
rain processes. Xu et al. (2008) showed that warm rain pro-
cesses often involve coalescence growth near the surface, re-
sulting in an increasing reflectivity with decreasing height.
The complex terrain (Fig. 14d) in area 3 could also contribute
to enhanced precipitation near and just above the surface.
However, the lowest radar observations in the area were
0.5 to 1.0 km above the surface (Fig. 14c) and had severe
blockages (see RQI, Fig. 14e). The warm/orographic rain en-
hancements near the surface were likely not well represented
by any of the reflectivity fields and thus resulted in underesti-
mation. The CNN-PRISM QPE (not shown) yielded a very
similar result as in the original CNN model, with an MBR of
1.105 (vs 1.083), a CC of 0.853 (vs 0.853), and a MAE of 0.173 in.
(vs 0.169 in.). Incorporating QPFs from NWP models along
with environmental (e.g., moisture, temperature, and wind) and

orographic variables may help capture the microphysical and dy-
namical processes involved in these warm/orographic rainfall re-
gimes and will be explored in a future study.

d. Case of 13 March 2020

The final case study involved a heavy rainfall event in
Southern California from 12 to 13 March 2020 (http://cw3e.
ucsd.edu/wp-content/uploads/2020/03/17Mar2020_Summary/
17Mar2020_Summary.pdf). The Q3EVAP product (Figs. 15a,c)
underestimated by ;41% relative to 24-h CoCoRaHS gauge
accumulations. The underestimation is likely related to the
known issues with radar blockages, overshooting and inade-
quate radar rainfall rate equations for the orographically en-
hanced rainfall regimes. The CNN product nearly eliminated
the overall bias (;2% underestimation) and reduced the MAE
by ;32% from 0.567 to 0.388 in. (Fig. 15) relative to Q3EVAP.
Further, Q3EVAP had a gap near southeastern California and
southwestern Arizona (area 1, Fig. 15a). The gap pattern
matches an area of minimum RQI (Fig. 16) and appears to be
an artifact of poor radar coverage. The CNN QPE (area 1,
Fig. 15b) filled the gap and provided a more continuous precipi-
tation distribution over the region. There is still a notable
spread about the 1:1 line from the CNN product (Fig. 15d),
with some overestimation introduced in the northwest portion
of the precipitation area (area 2, Fig. 15b) and underestimation
in the southeast part of the precipitation area (area 3,
Fig. 15b). The overestimation in area 2 was probably caused by
brightband contamination. Figure 17 shows the CREF and
SHSR fields and a vertical cross section of reflectivity at
2330 UTC 12 March 2020. The inflated reflectivities in CREF
(Fig. 17a) were clearly associated with a bright band in the
vertical cross section of reflectivity (Fig. 17d). While the
bright band was corrected in SHSR (Fig. 17b), the effect

FIG. 14. (a) CREF, (b) SHSR, (c) a vertical cross section of reflectivity along the red dashed line in (a) with freezing-level height shown
via the pink dashed line, (d) a shaded relief terrain map, and (e) RQI fields at 0330 UTC 17 Jan 2020. The white circles indicate the same
area 3 as in Fig. 13.
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was not corrected in other input fields such as CREF
(Fig. 17a) and RALA (Fig. 17c). The CNN model may not
have had sufficient gauge data samples in brightband areas
to fully account for the inflated effect. More training data
from brightband areas are needed to avoid such overestima-
tion in the CNN model.

The underestimation in area 3 showed a similar warm rain
situation as in area 3 of the 17 January 2020 case (Fig. 14).
There was no brightband signature in the CREF (Fig. 18a) or
in the vertical cross section (Fig. 18c). While the SHSR field
(Fig. 18b) had similar intensities as in area 2 (Fig. 17b), the
vertical cross section (Fig. 18c) showed relatively shallow pre-
cipitation cores (e.g., reflectivity . 20 dBZ) that were mostly
below the freezing level. The lowest radar observations were
0.5–1.5 km above the ground (Fig. 18c) and had severe block-
ages (see RQI; Fig. 16) due to the complex terrain (Fig. 18d).
With poor low-level coverage in this area, the warm/orographic
rain enhancement is not captured by the input reflectivity fields
and additional variable data would likely be needed to alleviate
the underestimation bias.

e. January–December 2021

As an extended evaluation, the CNN model was run for all
the days (a total of 112) in 2021 that had at least 20 nonzero
gauges in the domain. The 24-h CNN QPE performance
relative to CoCoRaHS gauges was compared to the 24-h
Q3EVAP product over this time. The time series plots fo-
cused on the winter months (Fig. 19) show that the CNN
model outperforms Q3EVAP during these cool season
months (approximately October to March), with less underes-
timation bias (Fig. 19a) and lower fMAE (Fig. 19b) than
Q3EVAP. Many of the precipitation days during the cool sea-
son involved widespread, heavy precipitation events as indi-
cated by the high domain average gauge values (gray “3”

symbols in Fig. 19) and a large number of nonzero gauge ob-
servations (gray “2” symbols in Fig. 19). The CNN QPE
showed consistent improvement over the Q3EVAP for these
widespread and relatively heavy rain events, with a 20%–50%
reduction in the bias and a 10%–20% reduction in the MAE
for days with at least 50 nonzero gauges and average gauge
amount exceeding 0.20 in. The CNN model performance

FIG. 15. As in Fig. 7, but for 1500 UTC 13 Mar 2020. The white and black circles and numbers indicate areas of specific
Q3EVAP and CNN QPE performances, and detailed explanations can be found in the text.
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drops off considerably during the summer months when the
events involve more scattered, convective precipitation (Fig. 20).
The CNN shows a higher overestimation bias (Fig. 20a) and in-
creased fMAE (Fig. 20b) compared to the Q3EVAP product
for many of these lighter or sporadic precipitation events. The

degraded CNN performance in the warm season may be largely
attributed to the choice of the training dataset, which consisted
of only cool season months. Further, the widespread heavy pre-
cipitation events in the training data may have dominated the
CNN model formulation due to the greater contributions of
these data samples to the total MAE, which is the parameter
that the CNN model attempts to minimize. Future work will ex-
plore whether inclusion of warm season months in the training
data and adjusting the training criteria could improve the model
performance for lighter and/or sporadic precipitation regimes.

4. Summary

In this work, a CNN model was developed and applied to
the precipitation estimation problem in the complex terrain of
the western CONUS. The model was optimized through exper-
imentation with different input variable combinations, prepro-
cessing techniques, and hyperparameter settings. The model
was evaluated for several heavy rainfall events associated with
landfalling atmospheric rivers in the western CONUS. Results
from these case studies showed that 24-h precipitation esti-
mates from the machine learning model statistically outperformed
physically based radar QPE. The CNN model consistently cor-
rected for the large underestimates observed in the radar QPE,

FIG. 16. The 24-h average RQI from 1500 UTC 11 Mar to 1500
UTC 12 Mar 2020. The circles and numbers indicate the same
areas as in Fig. 15.

FIG. 17. (a) CREF, (b) SHSR, and (c) RALA fields at 2330 UTC 12 Mar 2020. (d) A vertical cross section of the
reflectivity at the same time, which was taken along the red dashed line in (a). The pink dashed line represents the
freezing level.

O S BORNE E T A L . 15APRIL 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:11 PM UTC



reducing the domainwide MAE in each case. Further, the CNN
model consistently corrected for the range-dependent biases seen
in the physically based radar QPE, with performance only drop-
ping off substantially at the farthest ranges from the radar where
the beam overshoots the cloud top.

While the CNN model showed promise over the physically
based method, there were certain regions and precipitation
regimes for which more work is required. For example, the

CNN model tended to consistently overestimate precipitation
relative to gauges in certain valleys in the domain. These
areas may lack the orographic enhancements of precipitation
that are more prominent in the windward side of mountain
ranges and thus have a lower precipitation efficiency than in
the latter areas. Further, precipitation in these areas may be
susceptible to evaporative effects below the radar beam and
the current iteration of the CNN model cannot account for

FIG. 18. (a) CREF and (b) SHSR fields at 1800 UTC 12 Mar 2020. (c) A vertical cross section of the reflectivity at the
same time, which was taken along the red dashed line in (a). (d) A terrain map in the same area.

FIG. 19. (a) MBR and (b) fractional MAE of the daily Q3EVAP (blue line) and CNN (red line) QPEs for all days in 2021 with at least
50 gauges reporting nonzero values in the domain and where the domain average 24-h gauge amount exceeded 0.2 in. The gray “2” sym-
bols indicate the number of nonzero gauges and gray “3” the domain average 24-h gauge amounts. The pink dashed line indicates no bias
(MBR5 1.0).
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this effect. Introducing new input variables directly related to
atmospheric column moisture and wind–terrain interactions
may help the model better capture these effects. The model
also likely has issues at times accounting for brightband ef-
fects on the input fields, leading to overestimations such as
that seen in the case of 13 March 2020. A removal of fields
with uncorrected brightband contamination (e.g., CREF and
RALA) might mitigate this latter issue and warrants further
investigation. Another limitation seen in the CNN model re-
sults was the underestimation bias in areas where the radar
beam is completely overshooting the cloud top and thus un-
able to give the model enough information for an accurate
prediction. This can likely be improved through the use of
nonradar input variables such as NWP model QPF and satel-
lite QPE and will be explored in future work.

The long-term statistical analysis from all precipitation days
in 2021 showed a strong seasonal pattern to the model’s per-
formance. The model generally shows good performance and
improvement relative to the physically based QPE during the
cool season when there are predominantly widespread, strati-
form precipitation events. These types of events were well
represented in the training dataset, and the CNN model pro-
vided a 20%–40% reduction in bias and a 10%–20% reduc-
tion in MAE over the current MRMS radar QPE. The CNN
model statistics are less impressive in the warm season, with
the CNN QPE often being outperformed by the physically
based radar QPE. The model tends to strongly overestimate
precipitation during the more scattered, convective warm sea-
son events. This difference in performance is likely a result of
the training dataset exclusively containing cool season events
and warrants further studies using additional training data
from warm season scattered precipitation events.

This initial work is encouraging and points to the potential
of deep learning approaches to supplement the MRMS pre-
cipitation products in the challenging, unique microphysical
scenarios seen in complex terrain. To expand the applicability
of the CNN model, additional testing and refinement of the
input variables is being explored along with expanding to a
more diverse training dataset. Further model interpretation

methods will be applied to better understand how the model
responds to the selection of input variables, data prepro-
cessing choices, and hyperparameter settings, all of which
will help inform future model development. The CNN
model will be evaluated over more cases across time and
space to increase its technical readiness level for operational
deployment.
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APPENDIX

Acronyms

AR Atmospheric river
CC Correlation coefficient
CNN Convolutional neural network
CoCoRaHS Community Collaborative Rain

Hail and Snow Network
CREF Composite reflectivity
DEM Digital elevation model
DSD Drop size distribution
fMAE Fractional mean absolute error
IVT Integrated vapor transport
LSTM Long short-term memory model
MADIS Meteorological Assimilation Data

Ingest System
MAE Mean absolute error
MBR Mean bias ratio
MRMS Multi-Radar Multi-Sensor
NWP Numerical weather prediction

FIG. 20. As in Fig. 19, but for all days in 2021 with at least 20 nonzero gauges and domain average 24-h gauge value. 0 in.
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PRISM Parameter-Elevation Regressions
on Independent Slopes Model

Q3EVAP MRMS dual-pol radar-based QPE
with evaporation correction

Q3MS MRMS multisensor QPE
Q3RAD MRMS single-pol radar-based QPE
QPE Quantitative precipitation

estimation
QPF Quantitative precipitation forecast
RALA Reflectivity at lowest altitude
ReLU Rectified linear unit
RQI Radar quality index
SHSR Seamless hybrid scan reflectivity
SHSRH Seamless hybrid scan reflectivity

height
VIL Vertically integrated liquid
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